Wessen-Simulating-human-origin-evo.pdf
Simulating Human Origins and Evolution by Ken Wessen (2005) p 12:
Raup et al. (1973) studied the generation of species lineages by modelling speciation as an equilibrium process of random lineage branching. All lineages stem from a common ancestor, and may continue in time, become extinct, or produce a new lineage by branching, with a probability based on the difference between the existing diversity and a predetermined equilibrium value. An algorithm for the automatic identification of clades was included, allowing study of the taxonomy of the resulting phylogeny. The simulations produced quite a variety of clade shapes, which were then compared with actual clades for the Reptilia. An important fact demonstrated by this work is that differences in evolutionary pattern do not necessarily imply an inherent difference in the associated taxonomic groups: simulated groups evolving under identical constraints can behave very differently. Sepkoski and Kendrick (1993) used a similar model to simulate phylogenies. Employing exponential, logistic and mass-extinction diversification profiles, the resulting phylogenies were degraded in various ways (to model the effects of fossilisation, for example) and the information content remaining was analysed with respect to the ‘true’ phylogeny. Both these models can be generalised to allow the study of higher taxa, e.g. genus, family, etc. Nee et al. (1994) also used a similar approach to study the reconstruction of phylogenies, looking particularly at the role of lineages that become extinct.
No comments:
Post a Comment